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Context

Solve Ax = b where A is large and sparse

Parallel Multifrontal Algorithm: Sparse direct method for matrix
factorization based on a tree structure

I Efficiency due to good locality (level 3 BLAS)
I Good potential for parallelism
I Numerical robustness (pivoting)
I Large memory requirements (compared to iterative

methods).

→ Design/use out-of-core techniques in the context of the
parallel multifrontal method
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The multifrontal method (Duff, Reid’83)
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Preliminary Study: Experimental Environment

I MUMPS: Multifrontal Parallel Solver for both LU and LDLT .
I Reordering technique: METIS.
I Test platform:

I IBM platform at IDRIS (Orsay, France) composed of 4-way
and 32-way Power4+ processors.

I Cray XD1 system at CERFACS (Toulouse, France),
composed of 48 2-way nodes with 4 GB of memory per
node.

I Test problems: range of large matrices extracted from
standard collections or provided by MUMPS users.

I Simulation of an out-of-core behavior:
I Free factors as soon as they are computed
I Only factorization step is possible (factors are lost)

I Selected values: the bigger over all processors for :
I The size of factors
I The peak of active memory
I The peak of total memory
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Preliminary Study: Experimental Results

Typical memory behavior : (AUDIKW_1 matrix) with METIS
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Preliminary Study: Experimental Results

Typical memory behavior : Active memory / total memory ratio
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Out-of-core factorization (Phd of E. Agullo)

Out-of-core storage of factors :
→ write factor to disk as soon as they are computed.

Synchronous Version:
I Use standard write operations
I Factors are written to disk as soon as they are computed

Asynchronous Version:

I Copy factors to a user
buffer as soon as they are
computed

I A dedicated I/O thread
writes factors from the user
buffer to disk thread

I/O thread

I/O Request

I/O

Compute

Next step→ factors and stack out-of-core (largest problems or
many processors)
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Preliminary results
Sequential factorization:
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Preliminary results
Parallel factorization: (ULTRASOUND80 matrix)
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Solution step
Solution step→ solve the given system using the factored
matrix.
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Assembly Tree

BackwardForward

Sequential case:
I forward step(Fwd): postordering as in the factorization

phase
I backward step(Bwd): in the reverse order

Parallel case:
I no guarantee of the order in which the nodes are

processed
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Out-of-core Solution step (Phd of T. Slavova)
Assumptions:

I During factorization ALL factors are written to local disks
I No factors are kept in memory at the beginning of the

solution step
How to load efficiently data from disk?

I Each factor-block is loaded
only once

I User control of number
and size of buffers

I One Emergency buffer
(EMG), to hold largest front
(demand driven)

I Other buffers used to
automatically prefetch data
with a look-ahead
mechanism

EMG areaPrefetching areaPrefetching area

On Disk

On the way

In memory
Ready

In memory
Used

Not used
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Preliminary results

Time needed for solution step:

I “Small problem” : Grid 300-100-10
Factor Solve

Time Fwd Bwd Disk access
(sec) (sec) (sec) (MB/s)

In-core 34.9 0.4 0.4 -
OOC 34.9 1.3 1.2

I “large problem” : Qimonda07
Factor Solve

Time Fwd Bwd Disk access
(sec) (sec) (sec) (MB/s)

In-core 40.4 0.9 0.9 -
OOC 191.0 186.4 207.7
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I/O Mechanisms
read and write operations use a cache mechanism (page
cache)

I For each call to read or write, data is kept in the page
cache at the kernel level

I User doesn’t know when data is “really” written to disk
(unless by explicit synchronization)

I User has no control on the size of the page cache
I The page cache is usually managed with a LRU scheme

In our context, page cache can be dangerous.

I I/O may not have the same
speed (depending on whether
disk is accessed or not)

I The kernel may dramatically
slowdown the performance of
I/O’s.

Main memory

Disk

Swap may occure

⇒ Use of direct I/O mechanisms
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Direct I/O scheme
Advantages:

I Data is directly written to disk (data is not copied in the
page cache)

I Very efficient I/O operations
Drawbacks:

I A disk access is made at each call to read or write
I Data needs to be aligned in memory

Direct I/O scheme⇒ Use of more sophisticated algorithms but
ensures robustness.

Preliminary results: Factorization time (seconds)

Direct I/O Direct I/O P.C. P.C. in-core
Sync. Async. Sync. Async.

AUDIKW_1 2417.1 2217.3 2260.8 2211.3 2126.4
CONESHL_MOD 995.6 967.2 979.2 953.6 930.4
CONV3D64 10826.9 7599.4 8078.4 7981.6 -
ULTRASOUND80 1446.9 1389.8 1436.4 1377.3 1382.5
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Direct I/O scheme
Advantages:

I Data is directly written to disk (data is not copied in the
page cache)

I Very efficient I/O operations
Drawbacks:

I A disk access is made at each call to read or write
I Data needs to be aligned in memory

Direct I/O scheme⇒ Use of more sophisticated algorithms but
ensures robustness.
Preliminary results: Time for solution step (Qimonda07 matrix)

Forward Backward
Direct I/O (Demand-driven) 1149.2 1279.2
Direct I/O (Look-ahead) 174.0 183.7
P.C. (Demand-driven) 186.4 207.7
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Concluding remarks & future work

I First implementation of an out-of-core extension of the
MUMPS solver

I Efficient out-of-core factorization
I Good performance of solution step

Ongoing work:
Factorization step: (Phd. of E. Agullo)

I out-of-core management of the contribution blocks
I design new scheduling strategies adapted to the

out-of-core context
I work on algorithms to minimize the I/O volume

Solution step: (Phd. of T. Slavova)
I design specific scheduling/prefetching algorithms for the

parallel solution step
I study the case of linear systems with multiple right-hand

sides
Parallel multifrontal method with out-of-core techniques 20/20


	Context
	The multifrontal method
	Concepts
	preliminary study

	Out-of-core factorization step
	Out-of-core solution step
	Operating system I/O mechanisms
	Direct I/O

	Concluding remarks

